中考網(wǎng)
全國(guó)站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績(jī)查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 中考備考 > 中考復(fù)習(xí) > 中考數(shù)學(xué) > 正文

2019年中考數(shù)學(xué)輔導(dǎo):圓的考點(diǎn)總結(jié)及題型分析

來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-22 15:13:01

中考真題

智能內(nèi)容

學(xué)生們都應(yīng)該知道,圓需要大家掌握的知識(shí)體系概括起來主要包括3塊內(nèi)容:與圓有關(guān)的性質(zhì),與圓有關(guān)的位置關(guān)系,與圓有關(guān)的計(jì)算。今天教育中考頻道小編將為大家輔導(dǎo)與圓有關(guān)的位置關(guān)系和與圓有關(guān)的計(jì)算。希望給學(xué)生們帶來幫助!

一、考點(diǎn)分析考點(diǎn)

考點(diǎn)一、點(diǎn)和圓的位置關(guān)系

設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:

d

d=r點(diǎn)P在⊙O上;

d>r點(diǎn)P在⊙O外。

考點(diǎn)二、過三點(diǎn)的圓

1、過三點(diǎn)的圓

不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

2、三角形的外接圓

經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個(gè)三角形的外心。

4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件)

圓內(nèi)接四邊形對(duì)角互補(bǔ)。

考點(diǎn)三、直線與圓的位置關(guān)系

直線和圓有三種位置關(guān)系,具體如下:

(1)相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);

(2)相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,

(3)相離:直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。

如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:

直線l與⊙O相交d

直線l與⊙O相切d=r;

直線l與⊙O相離d>r;

考點(diǎn)四、圓內(nèi)接四邊形

圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。

1、切線的判定定理:過半徑外端且垂直于半徑的直線是切線;

兩個(gè)條件:過半徑外端且垂直半徑,二者缺一不可

2、性質(zhì)定理:切線垂直于過切點(diǎn)的半徑(如上圖)

推論1:過圓心垂直于切線的直線必過切點(diǎn)。

推論2:過切點(diǎn)垂直于切線的直線必過圓心。

以上三個(gè)定理及推論也稱二推一定理:

即:①過圓心;②過切點(diǎn);③垂直切線,三個(gè)條件中知道其中兩個(gè)條件就能推出最后一個(gè)。

考點(diǎn)五、切線長(zhǎng)定理

切線長(zhǎng)定理: 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這點(diǎn)和圓心連線平分兩條切線的夾角。

考點(diǎn)六、三角形的內(nèi)切圓和外接圓

1、三角形的內(nèi)切圓

與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。

2、三角形的內(nèi)心

三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心。

考點(diǎn)七、弧長(zhǎng)和扇形面積

二、真題再現(xiàn)

【考點(diǎn)】圓的綜合題

【點(diǎn)評(píng)】本題考查了切線的性質(zhì)、弧長(zhǎng)公式、平行線的性質(zhì)、三角形中位線定理以及等邊三角形的判斷,解題的關(guān)鍵是:(1)求出∠CFD=∠ODF=90°;(2)找出△OBD是等邊三角形.本題屬于中檔題,難度不大,解決該題型題目時(shí),通過角的計(jì)算找出90°的角是關(guān)鍵。

以上就是中考數(shù)學(xué)考點(diǎn)總結(jié)的主要內(nèi)容,更多精彩內(nèi)容盡請(qǐng)關(guān)注教育中考頻道!

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國(guó)各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢(mèng)前行 未來可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長(zhǎng)必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考?jí)狠S題

中考模擬題

各科練習(xí)題

單元測(cè)試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語知識(shí)點(diǎn)

初中語文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科