來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-01-10 15:14:40
01
勾股定理
內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;
表示方法:如果直角三角形的兩直角邊分別為a,b,斜邊為c,那么
勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方
02
勾股定理的證明
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是
①圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變
、诟鶕(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理
常見方法如下:
方法一:
方法二:
四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積.四個(gè)直角
方法三:
化簡得證。
03
勾股定理的適用范圍
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時(shí),必須明了所考察的對(duì)象是直角三角形
04
勾股定理的應(yīng)用
、谥乐苯侨切我贿,可得另外兩邊之間的數(shù)量關(guān)系③可運(yùn)用勾股定理解決一些實(shí)際問題
05
勾股定理的逆定理
如果三角形三邊長a,b,c滿足,那么這個(gè)三角形是直角三角形,其中c為斜邊.
06
勾股數(shù)
07
勾股定理的應(yīng)用
勾股定理能夠幫助我們解決直角三角形中的邊長的計(jì)算或直角三角形中線段之間的關(guān)系的證明問題.在使用勾股定理時(shí),必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運(yùn)用勾股定理進(jìn)行計(jì)算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進(jìn)行求解。
08
勾股定理逆定理的應(yīng)用
勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關(guān)系判斷一個(gè)三角形是否是直角三角形,在具體推算過程中,應(yīng)用兩短邊的平方和與最長邊的平方進(jìn)行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯(cuò)誤的結(jié)論.
09
勾股定理及其逆定理的應(yīng)用
勾股定理及其逆定理在解決一些實(shí)際問題或具體的幾何問題中,是密不可分的一個(gè)整體.通常既要通過逆定理判定一個(gè)三角形是直角三角形,又要用勾股定理求出邊的長度,二者相輔相成,完成對(duì)問題的解決.常見圖形:
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看