來源:網(wǎng)絡(luò)資源 2022-05-23 15:55:56
1二次函數(shù)的三種表達式
一般式:y=ax^2;+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)^2;+k [拋物線的頂點P(h,k)]
交點式:y=a(x-x1)(x-x2) [僅限于與x軸有交點A(x1,0)和 B(x2,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
2拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線
x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標(biāo)為
P [ -b/2a ,(4ac-b^2;)/4a ]。
當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
3二次函數(shù)y=ax2+c的圖象與性質(zhì)
(1)拋物線y=ax2+c的形狀由a決定,位置由c決定.
(2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點坐標(biāo)是(0,c),對稱軸是y軸.
當(dāng)a>0時,圖象的開口向上,有最低點(即頂點),當(dāng)x=0時,y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.
當(dāng)a<0時,圖象的開口向下,有最高點(即頂點),當(dāng)x=0時,y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.
(3)拋物線y=ax2+c與y=ax2的關(guān)系.
拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動|c|個單位得到.當(dāng)c>0時,向上平行移動,當(dāng)c<0時,向下平行移動.
相關(guān)推薦:
關(guān)注中考網(wǎng)微信公眾號
每日推送中考知識點,應(yīng)試技巧
助你迎接2022年中考!
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看