中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 初中數(shù)學(xué) > 幾何輔導(dǎo) > 正文

2023年初中數(shù)學(xué):幾何模型及構(gòu)造解析

來源:網(wǎng)絡(luò)資源 2022-10-28 17:50:42

中考真題

智能內(nèi)容

 全等變換

  平移:平行等線段(平行四邊形)
  對(duì)稱:角平分線或垂直或半角
  旋轉(zhuǎn):相鄰等線段繞公共頂點(diǎn)旋轉(zhuǎn)
  對(duì)稱全等模型
  說明:以角平分線為軸在角兩邊進(jìn)行截長補(bǔ)短或者作邊的垂線,形成對(duì)稱全等。兩邊進(jìn)行邊或者角的等量代換,產(chǎn)生聯(lián)系。垂直也可以做為軸進(jìn)行對(duì)稱全等。
  對(duì)稱半角模型
  說明:上圖依次是45°、30°、22.5°、15°及有一個(gè)角是30°直角三角形的對(duì)稱(翻折),翻折成正方形或者等腰直角三角形、等邊三角形、對(duì)稱全等。
  旋轉(zhuǎn)全等模型
  半角:有一個(gè)角含1/2角及相鄰線段
  自旋轉(zhuǎn):有一對(duì)相鄰等線段,需要構(gòu)造旋轉(zhuǎn)全等
  共旋轉(zhuǎn):有兩對(duì)相鄰等線段,直接尋找旋轉(zhuǎn)全等
  中點(diǎn)旋轉(zhuǎn):倍長中點(diǎn)相關(guān)線段轉(zhuǎn)換成旋轉(zhuǎn)全等問題
  旋轉(zhuǎn)半角模型
  說明:旋轉(zhuǎn)半角的特征是相鄰等線段所成角含一個(gè)二分之一角,通過旋轉(zhuǎn)將另外兩個(gè)和為二分之一的角拼接在一起,成對(duì)稱全等。
  自旋轉(zhuǎn)模型
  構(gòu)造方法:
  遇60度旋60度,造等邊三角形
  遇90度旋90度,造等腰直角
  遇等腰旋頂點(diǎn),造旋轉(zhuǎn)全等
  遇中點(diǎn)旋180度,造中心對(duì)稱
  共旋轉(zhuǎn)模型
說明:旋轉(zhuǎn)中所成的全等三角形,第三邊所成的角是一個(gè)經(jīng)常考察的內(nèi)容。通過“8”字模型可以證明。
  模型變形
說明:模型變形主要是兩個(gè)正多邊形或者等腰三角形的夾角的變化,另外是等腰直角三角形與正方形的混用。
當(dāng)遇到復(fù)雜圖形找不到旋轉(zhuǎn)全等時(shí),先找兩個(gè)正多邊形或者等腰三角形的公共頂點(diǎn),圍繞公共頂點(diǎn)找到兩組相鄰等線段,分組組成三角形證全等。
  中點(diǎn)旋轉(zhuǎn):
說明:兩個(gè)正方形、兩個(gè)等腰直角三角形或者一個(gè)正方形一個(gè)等腰直角三角形及兩個(gè)圖形頂點(diǎn)連線的中點(diǎn),證明另外兩個(gè)頂點(diǎn)與中點(diǎn)所成圖形為等腰直角三角形。

 

 

證明方法是倍長所要證等腰直角三角形的一直角邊,轉(zhuǎn)化成要證明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋轉(zhuǎn)頂點(diǎn),通過證明旋轉(zhuǎn)全等三角形證明倍長后的大三角形為等腰直角三角形從而得證。

  幾何最值模型
  對(duì)稱最值(兩點(diǎn)間線段最短)
  對(duì)稱最值(點(diǎn)到直線垂線段最短)
  說明:通過對(duì)稱進(jìn)行等量代換,轉(zhuǎn)換成兩點(diǎn)間距離及點(diǎn)到直線距離。
  旋轉(zhuǎn)最值(共線有最值)
  說明:找到與所要求最值相關(guān)成三角形的兩個(gè)定長線段,定長線段的和為最大值,定長線段的差為最小值。
  剪拼模型
  三角形→四邊形
  四邊形→四邊形
  說明:剪拼主要是通過中點(diǎn)的180度旋轉(zhuǎn)及平移改變圖形的形狀。
  矩形→正方形
  說明:通過射影定理找到正方形的邊長,通過平移與旋轉(zhuǎn)完成形狀改變
  正方形+等腰直角三角形→正方形
  面積等分
  旋轉(zhuǎn)相似模型
說明:兩個(gè)等腰直角三角形成旋轉(zhuǎn)全等,兩個(gè)有一個(gè)角是300角的直角三角形成旋轉(zhuǎn)相似。
推廣:兩個(gè)任意相似三角形旋轉(zhuǎn)成一定角度,成旋轉(zhuǎn)相似。第三邊所成夾角符合旋轉(zhuǎn)“8”字的規(guī)律。
  相似模型
說明:注意邊和角的對(duì)應(yīng),相等線段或者相等比值在證明相似中起到通過等量代換來構(gòu)造相似三角形的作用
說明:(1)三垂直到一線三等角的演變,三等角以30度、45度、60度形式出現(xiàn)的居多。
(2)內(nèi)外角平分線定理到射影定理的演變,注意之間的相同與不同之處。另外,相似、射影定理、相交弦定理(可以推廣到圓冪定理)之間的比值可以轉(zhuǎn)換成乘積,通過等線段、等比值、等乘積進(jìn)行代換,進(jìn)行證明得到需要的結(jié)論。

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢(mèng)前行 未來可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考?jí)狠S題

中考模擬題

各科練習(xí)題

單元測(cè)試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語知識(shí)點(diǎn)

初中語文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科